Forum Replies Created

Viewing 27 posts - 1 through 27 (of 27 total)
  • Author
    Posts
  • in reply to: RPi not booting after writing image to SD card #85410
    swandog
    Participant

    @centax there is a list of Rpi compatible SD cards if you do a google search. I didn’t come across this until afterwards.

    in reply to: RPi not booting after writing image to SD card #85275
    swandog
    Participant

    I didn’t actually use his advise in the end as it didn’t help me, think the issue was a s**t sd card so used an 8gb one which worked fine.

    in reply to: Tried everything can't get Mame working #83702
    swandog
    Participant

    Hi Floob, sorry for the late reply, things are mentla at the moment.

    Deleted those cfg files and got it all working so many thanks for your help.

    Are you able to point me in the direction of how I can get the Amiga emulator to work? :)

    in reply to: Tried everything can't get Mame working #83482
    swandog
    Participant

    Can anyone help? Looks like I’ve messed up the ‘enter’ key so can’t get back into the mame menu to configure the controls. Is there a way of resetting the controls somehow?

    in reply to: Tried everything can't get Mame working #83478
    swandog
    Participant

    Tried this and managed to get into the menu and change the controls but I think I’ve messed it up as my ‘enter’ button doesn’t work on the keyboard so can’t get back in to change the buttons.

    Any way of resetting the controls or editing them in a file?

    in reply to: Tried everything can't get Mame working #83474
    swandog
    Participant

    HI Floob,

    Managed to get around to trying your code (thanks) and it works but now my xbox controller wont work whilst in game.

    Any ideas?

    in reply to: Tried everything can't get Mame working #83431
    swandog
    Participant

    Thanks. Will give that a whirl and let you know if it works.

    in reply to: Tried everything can't get Mame working #83402
    swandog
    Participant

    heres my es_systems file as it didnt upload

    in reply to: Tried everything can't get Mame working #83401
    swandog
    Participant

    Hi Floob, thanks for your reply.

    I have got 2.3 but I was trying so many things I may have copied an old path off a tutorial.

    Do you know what I should change to get it back to normal?

    swandog
    Participant

    @methylamine

    Yeah I eventually got it working, took me almost a week but got there in the end.

    swandog
    Participant

    Right I’ve finally got it working.

    Followed the following thread https://www.petrockblock.com/forums/topic/xbox-360-controller-set-up-v2-3/v and copied someone’s retroarch.cfg file and it works. Only tried the snes emulator so far.

    I think I may have been editing the wrong file :/

    trimmtrabb thanks for all your help, I’m sure i’ll be back for more.

    swandog
    Participant

    Removed the #’s, didn’t make any difference. Removed the script from retroarch.cfg, ran the following script `sudo chown pi /opt/retropie/configs/all/retroarch.cfg
    cd /opt/retropie/emulators/RetroArch/installdir/bin
    sudo ./retroarch-joyconfig -j 0 >> /opt/retropie/configs/all/retroarch.cfgthensudo apt-get install joystickthenjstest /dev/input/js0`

    Made a note of the numbers by pressing each button, went back in to retroarch.cfg and pasted your script again and looked to change the buttons but they were the same. Still no different to yesterday, only B, Y, and start work.

    Is there any files I can delete then run again from scratch? and in what order?

    swandog
    Participant

    :) Ok thanks will give it a go and let you know. Appreciate the help

    swandog
    Participant

    Managed to make some progress. I’ve added the script to stop the controller blinking in /etc/rc.local and now the start, A & B buttons work but no others including the D-pad.

    Also noticed when I exit emulationstation, in the script that appears it says no xbox or xbox 360 driver found? Would that be why?

    swandog
    Participant

    Connected to the pi using winscp and edited the retropie.cfg but its still not working.

    my retropie.cfg file is as follows. Am I doing something wrong?

    ## Skeleton config file for RetroArch
    
    # Save all save files (*.srm) to this directory. This includes related files like .bsv, .rtc, .psrm, etc ...
    # This will be overridden by explicit command line options.
    # savefile_directory =
    
    # Save all save states (*.state) to this directory.
    # This will be overridden by explicit command line options.
    # savestate_directory =
    
    # If set to a directory, Content which is temporarily extracted
    # will be extracted to this directory.
    # extraction_directory =
    
    # Automatically saves a savestate at the end of RetroArch's lifetime.
    # The path is $SRAM_PATH.auto.
    # RetroArch will automatically load any savestate with this path on startup if savestate_auto_load is set.
    # savestate_auto_save = false
    # savestate_auto_load = true
    
    # Load libretro from a dynamic location for dynamically built RetroArch.
    # This option is mandatory.
    
    # Path to a libretro implementation.
    # libretro_path = "/path/to/libretro.so"
    
    # A directory for where to search for libretro core implementations.
    # libretro_directory =
    
    # Sets log level for libretro cores (GET_LOG_INTERFACE).
    # If a log level issued by a libretro core is below libretro_log_level, it is ignored.
    # DEBUG logs are always ignored unless verbose mode is activated (--verbose).
    # DEBUG = 0, INFO = 1, WARN = 2, ERROR = 3.
    # libretro_log_level = 0
    
    # Enable or disable verbosity level of frontend.
    # log_verbosity = false
    
    # Enable or disable RetroArch performance counters
    # perfcnt_enable = false
    
    # Path to core options config file.
    # This config file is used to expose core-specific options.
    # It will be written to by RetroArch.
    # A default path will be assigned if not set.
    core_options_path = /opt/retropie/configs/all/retroarch-core-options.cfg
    
    # Path to content load history file.
    # RetroArch keeps track of all content loaded in the menu and from CLI directly for convenient quick loading.
    # A default path will be assigned if not set.
    # game_history_path =
    
    # Number of entries that will be kept in content history file.
    # game_history_size = 100
    
    # Sets the "system" directory.
    # Implementations can query for this directory to load BIOSes, system-specific configs, etc.
    system_directory = /home/pi/RetroPie/roms/../BIOS
    
    # Sets start directory for menu content browser.
    # rgui_browser_directory =
    
    # Content directory. Interacts with RETRO_ENVIRONMENT_GET_CONTENT_DIRECTORY.
    # Usually set by developers who bundle libretro/RetroArch apps to point to assets.
    # content_directory =
    
    # Assets directory. This location is queried by default when menu interfaces try to look for
    # loadable assets, etc.
    # assets_directory =
    
    # Sets start directory for menu config browser.
    # rgui_config_directory =
    
    # Show startup screen in menu.
    # Is automatically set to false when seen for the first time.
    # This is only updated in config if config_save_on_exit is set to true, however.
    # rgui_show_start_screen = true
    
    # Flushes config to disk on exit. Useful for menu as settings can be modified.
    # Overwrites the config. #include's and comments are not preserved.
    config_save_on_exit = false
    
    # Load up a specific config file based on the core being used.
    # core_specific_config = false
    
    #### Video
    
    # Video driver to use. "gl", "xvideo", "sdl"
    # video_driver = "gl"
    
    # Which OpenGL context implementation to use.
    # Possible ones for desktop are: glx, x-egl, kms-egl, sdl-gl, wgl.
    # By default, tries to use first suitable driver.
    # video_gl_context =
    
    # Windowed xscale and yscale
    # (Real x res: base_size * xscale * aspect_ratio, real y res: base_size * yscale)
    # video_xscale = 3.0
    # video_yscale = 3.0
    
    # Fullscreen resolution. Resolution of 0 uses the resolution of the desktop.
    # video_fullscreen_x = 0
    # video_fullscreen_y = 0
    
    # Start in fullscreen. Can be changed at runtime.
    # video_fullscreen = false
    
    # If fullscreen, prefer using a windowed fullscreen mode.
    # video_windowed_fullscreen = true
    
    # Which monitor to prefer. 0 (default) means no particular monitor is preferred, 1 and up (1 being first monitor),
    # suggests RetroArch to use that particular monitor.
    # video_monitor_index = 0
    
    # Forcibly disable composition. Only works in Windows Vista/7 for now.
    # video_disable_composition = false
    
    # Video vsync.
    # video_vsync = true
    
    # Attempts to hard-synchronize CPU and GPU. Can reduce latency at cost of performance.
    # video_hard_sync = false
    
    # Sets how many frames CPU can run ahead of GPU when using video_hard_sync.
    # Maximum is 3.
    # video_hard_sync_frames = 0
    
    # Inserts a black frame inbetween frames.
    # Useful for 120 Hz monitors who want to play 60 Hz material with eliminated ghosting.
    # video_refresh_rate should still be configured as if it is a 60 Hz monitor (divide refresh rate by 2).
    # video_black_frame_insertion = false
    
    # Use threaded video driver. Using this might improve performance at possible cost of latency and more video stuttering.
    video_threaded = true
    
    # Use a shared context for HW rendered libretro cores.
    # Avoids having to assume GL state changes inbetween frames.
    # video_shared_context = false
    
    # Smoothens picture with bilinear filtering. Should be disabled if using pixel shaders.
    video_smooth = false
    
    # Forces rendering area to stay equal to content aspect ratio or as defined in video_aspect_ratio.
    # video_force_aspect = true
    
    # Only scales video in integer steps.
    # The base size depends on system-reported geometry and aspect ratio.
    # If video_force_aspect is not set, X/Y will be integer scaled independently.
    # video_scale_integer = false
    
    # A floating point value for video aspect ratio (width / height).
    # If this is not set, aspect ratio is assumed to be automatic.
    # Behavior then is defined by video_aspect_ratio_auto.
    video_aspect_ratio = 1.33
    
    # If this is true and video_aspect_ratio is not set,
    # aspect ratio is decided by libretro implementation.
    # If this is false, 1:1 PAR will always be assumed if video_aspect_ratio is not set.
    # video_aspect_ratio_auto = false
    
    # Forces cropping of overscanned frames.
    # Exact behavior of this option is implementation specific.
    # video_crop_overscan = true 
    
    # Path to shader. Shader can be either Cg, CGP (Cg preset) or GLSL, GLSLP (GLSL preset)
    # video_shader = "/path/to/shader.{cg,cgp,glsl,glslp}"
    
    # Load video_shader on startup.
    # Other shaders can still be loaded later in runtime.
    # video_shader_enable = false
    
    # Defines a directory where shaders (Cg, CGP, GLSL) are kept for easy access.
    video_shader_dir = /opt/retropie/emulators/RetroArch/shader/
    
    # CPU-based video filter. Path to a dynamic library.
    # video_filter =
    
    # Path to a font used for rendering messages. This path must be defined to enable fonts.
    # Do note that the _full_ path of the font is necessary!
    # video_font_path = 
    
    # Size of the font rendered.
    # video_font_size = 32
    
    # Enable usage of OSD messages.
    # video_font_enable = true
    
    # Offset for where messages will be placed on screen. Values are in range 0.0 to 1.0 for both x and y values. 
    # [0.0, 0.0] maps to the lower left corner of the screen.
    # video_message_pos_x = 0.05
    # video_message_pos_y = 0.05
    
    # Color for message. The value is treated as a hexadecimal value.
    # It is a regular RGB hex number, i.e. red is "ff0000".
    # video_message_color = ffffff
    
    # Video refresh rate of your monitor.
    # Used to calculate a suitable audio input rate.
    # video_refresh_rate = 59.95
    
    # Allows libretro cores to set rotation modes.
    # Setting this to false will honor, but ignore this request.
    # This is useful for vertically oriented content where one manually rotates the monitor.
    # video_allow_rotate = true
    
    # Forces a certain rotation of the screen.
    # The rotation is added to rotations which the libretro core sets (see video_allow_rotate).
    # The angle is <value> * 90 degrees counter-clockwise.
    # video_rotation = 0
    
    #### Audio
    
    # Enable audio.
    # audio_enable = true
    
    # Audio output samplerate.
    # audio_out_rate = 48000
    
    # Audio resampler backend. Which audio resampler to use.
    # Default will use "sinc".
    # audio_resampler =
    
    # Audio driver backend. Depending on configuration possible candidates are: alsa, pulse, oss, jack, rsound, roar, openal, sdl, xaudio.
    # audio_driver =
    
    # Override the default audio device the audio_driver uses. This is driver dependant. E.g. ALSA wants a PCM device, OSS wants a path (e.g. /dev/dsp), Jack wants portnames (e.g. system:playback1,system:playback_2), and so on ...
    # audio_device =
    
    # Audio DSP plugin that processes audio before it's sent to the driver. Path to a dynamic library.
    # audio_dsp_plugin =
    
    # Will sync (block) on audio. Recommended.
    # audio_sync = true
    
    # Desired audio latency in milliseconds. Might not be honored if driver can't provide given latency.
    # audio_latency = 64
    
    # Enable audio rate control.
    # audio_rate_control = true
    
    # Controls audio rate control delta. Defines how much input rate can be adjusted dynamically.
    # Input rate = in_rate * (1.0 +/- audio_rate_control_delta)
    # audio_rate_control_delta = 0.005
    
    # Audio volume. Volume is expressed in dB.
    # 0 dB is normal volume. No gain will be applied.
    # Gain can be controlled in runtime with input_volume_up/input_volume_down.
    # audio_volume = 0.0
    
    #### Overlay
    
    # Enable overlay.
    # input_overlay_enable = false
    
    # Path to input overlay
    # input_overlay =
    
    # Overlay opacity
    # input_overlay_opacity = 1.0
    
    # Overlay scale
    # input_overlay_scale = 1.0
    
    #### Input
    
    # Input driver. Depending on video driver, it might force a different input driver.
    # input_driver = sdl
    
    # Joypad driver. (Valid: linuxraw, sdl, dinput)
    # input_joypad_driver =
    
    # Keyboard layout for input driver if applicable (udev/evdev for now).
    # Syntax is either just layout (e.g. "no"), or a layout and variant separated with colon ("no:nodeadkeys").
    # input_keyboard_layout =
    
    # Defines axis threshold. Possible values are [0.0, 1.0]
    # input_axis_threshold = 0.5
    
    # Enable input auto-detection. Will attempt to autoconfigure
    # joypads, Plug-and-Play style.
    input_autodetect_enable = true
    
    # Directory for joypad autoconfigs (PC).
    # If a joypad is plugged in, that joypad will be autoconfigured if a config file
    # corresponding to that joypad is present in joypad_autoconfig_dir.
    # Input binds which are made explicit (input_playerN_*_btn/axis) will take priority over autoconfigs.
    # Autoconfigs can be created with retroarch-joyconfig, manually, or with a frontend.
    # Requires input_autodetect_enable to be enabled.
    joypad_autoconfig_dir = /opt/retropie/emulators/RetroArch/configs/
    
    # Enable debug input key reporting on-screen.
    # input_debug_enable = false
    
    # Sets which libretro device is used for a player.
    # Devices are indentified with a number.
    # This is normally saved by the menu.
    # Device IDs are found in libretro.h.
    # These settings are overridden by explicit command-line arguments which refer to input devices.
    # None: 0
    # Joypad (RetroPad): 1
    # Mouse: 2
    # Keyboard: 3
    # Generic Lightgun: 4
    # Joypad w/ Analog (RetroPad + Analog sticks): 5
    # Multitap (SNES specific): 257
    # Super Scope (SNES specific): 260
    # Justifier (SNES specific): 516
    # Justifiers (SNES specific): 772
    
    # input_libretro_device_p1 =
    # input_libretro_device_p2 =
    # input_libretro_device_p3 =
    # input_libretro_device_p4 =
    # input_libretro_device_p5 =
    # input_libretro_device_p6 =
    # input_libretro_device_p7 =
    # input_libretro_device_p8 =
    
    # Keyboard input. Will recognize letters ("a" to "z") and the following special keys (where "kp_"
    # is for keypad keys):
    #
    #   left, right, up, down, enter, kp_enter, tab, insert, del, end, home,
    #   rshift, shift, ctrl, alt, space, escape, add, subtract, kp_plus, kp_minus,
    #   f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12,
    #   num0, num1, num2, num3, num4, num5, num6, num7, num8, num9, pageup, pagedown,
    #   keypad0, keypad1, keypad2, keypad3, keypad4, keypad5, keypad6, keypad7, keypad8, keypad9,
    #   period, capslock, numlock, backspace, multiply, divide, print_screen, scroll_lock,
    #   tilde, backquote, pause, quote, comma, minus, slash, semicolon, equals, leftbracket,
    #   backslash, rightbracket, kp_period, kp_equals, rctrl, ralt
    #
    # Keyboard input, Joypad and Joyaxis will all obey the "nul" bind, which disables the bind completely, 
    # rather than relying on a default.
    
    # input_player1_a = x
    # input_player1_b = z
    # input_player1_y = a
    # input_player1_x = s
    # input_player1_start = enter
    # input_player1_select = rshift
    # input_player1_l = q
    # input_player1_r = w
    # input_player1_left = left
    # input_player1_right = right
    # input_player1_up = up
    # input_player1_down = down
    # input_player1_l2 =
    # input_player1_r2 =
    # input_player1_l3 =
    # input_player1_r3 =
    
    # Two analog sticks (DualShock-esque).
    # Bound as usual, however, if a real analog axis is bound,
    # it can be read as a true analog.
    # Positive X axis is right, Positive Y axis is down.
    # input_player1_l_x_plus =
    # input_player1_l_x_minus =
    # input_player1_l_y_plus =
    # input_player1_l_y_minus =
    # input_player1_r_x_plus =
    # input_player1_r_x_minus =
    # input_player1_r_y_plus =
    # input_player1_r_y_minus =
    
    # If desired, it is possible to override which joypads are being used for player 1 through 8.
    # First joypad available is 0.
    # input_player1_joypad_index = 0
    # input_player2_joypad_index = 1
    # input_player3_joypad_index = 2
    # input_player4_joypad_index = 3
    # input_player5_joypad_index = 4
    # input_player6_joypad_index = 5
    # input_player7_joypad_index = 6
    # input_player8_joypad_index = 7
    
    # Joypad buttons.
    # Figure these out by using RetroArch-Phoenix or retroarch-joyconfig.
    # You can use joypad hats with hnxx, where n is the hat, and xx is a string representing direction. 
    # E.g. "h0up"
    
    #input_player1_joypad_index = "0"
    #input_player1_b_btn = "1"
    #input_player1_y_btn = "3"
    #input_player1_select_btn = "8"
    #input_player1_start_btn = "9"
    #input_player1_up_axis = "-5"
    #input_player1_down_axis = "+5"
    #input_player1_left_axis = "-4"
    #input_player1_right_axis = "+4"
    #input_player1_a_btn = "0"
    #input_player1_x_btn = "2"
    #input_player1_l_btn = "4"
    #input_player1_r_btn = "5"
    #input_player1_l2_btn = "6"
    #input_player1_r2_btn = "7"
    #input_player1_l3_btn = "11"
    #input_player1_r3_btn = "12"
    #input_player1_l_x_plus_axis = "+0"
    #input_player1_l_x_minus_axis = "-0"
    #input_player1_l_y_plus_axis = "+1"
    #input_player1_l_y_minus_axis = "-1"
    #input_player1_r_x_plus_axis = "+2"
    #input_player1_r_x_minus_axis = "-2"
    #input_player1_r_y_plus_axis = "+3"
    #input_player1_r_y_minus_axis = "-3"
    
    #input_enable_hotkey_btn = "8"
    #input_exit_emulator_btn = "9"
    
    #input_enable_hotkey_btn = "8"
    #input_save_state_btn = "5"
    
    #input_enable_hotkey_btn = "8"
    #input_load_state_btn = "4"
    
    #input_enable_hotkey_btn = "8"
    #input_state_slot_increase_btn = "7"
    
    #input_enable_hotkey_btn = "8"
    #input_state_slot_decrease_btn ="6"
    
    #input_enable_hotkey_btn = "8"
    #input_menu_toggle_btn = "10" 
    
    # Axis for RetroArch D-Pad. 
    # Needs to be either '+' or '-' in the first character signaling either positive or negative direction of the axis, then the axis number. 
    # Do note that every other input option has the corresponding _btn and _axis binds as well; they are omitted here for clarity.
    # input_player1_left_axis =
    # input_player1_right_axis =
    # input_player1_up_axis =
    # input_player1_down_axis =
    
    # Holding the turbo while pressing another button will let the button enter a turbo mode
    # where the button state is modulated with a periodic signal.
    # The modulation stops when the button itself (not turbo button) is released.
    # input_player1_turbo =
    
    # Describes the period and how long of that period a turbo-enabled button should behave.
    # Numbers are described in frames.
    # input_turbo_period = 6
    # input_turbo_duty_cycle = 3
    
    # This goes all the way to player 8 (*_player2_*, *_player3_*, etc), but omitted for clarity.
    # All input binds have corresponding binds for keyboard (none), joykeys (_btn) and joyaxes (_axis) as well.
    
    # Toggles fullscreen.
    # input_toggle_fullscreen = f
    
    # Saves state.
    # input_save_state = f2
    # Loads state.
    # input_load_state = f4
    
    # State slots. With slot set to 0, save state name is *.state (or whatever defined on commandline).
    # When slot is != 0, path will be $path%d, where %d is slot number.
    # input_state_slot_increase = f7
    # input_state_slot_decrease = f6
    
    # Toggles between fast-forwarding and normal speed.
    # input_toggle_fast_forward = space
    
    # Hold for fast-forward. Releasing button disables fast-forward.
    # input_hold_fast_forward = l
    
    # Key to exit RetroArch cleanly. 
    # Killing it in any hard way (SIGKILL, etc) will terminate RetroArch without saving RAM, etc.
    # On Unix-likes, SIGINT/SIGTERM allows a clean deinitialization.
    input_exit_emulator = escape
    
    # Applies next and previous shader in directory.
    input_shader_next = m
    input_shader_prev = n
    
    # Hold button down to rewind. Rewinding must be enabled.
    input_rewind = r
    
    # Toggle between recording and not.
    # input_movie_record_toggle = o
    
    # Toggle between paused and non-paused state
    # input_pause_toggle = p
    
    # Frame advance when content is paused
    # input_frame_advance = k
    
    # Reset the content.
    # input_reset = h
    
    # Cheats.
    # input_cheat_index_plus = y
    # input_cheat_index_minus = t
    # input_cheat_toggle = u
    
    # Mute/unmute audio
    # input_audio_mute = f9
    
    # Take screenshot
    # input_screenshot = f8
    
    # Netplay flip players.
    # input_netplay_flip_players = i
    
    # Hold for slowmotion.
    # input_slowmotion = e
    
    # Enable other hotkeys.
    # If this hotkey is bound to either keyboard, joybutton or joyaxis,
    # all other hotkeys will be disabled unless this hotkey is also held at the same time.
    # This is useful for RETRO_KEYBOARD centric implementations
    # which query a large area of the keyboard, where it is not desirable
    # that hotkeys get in the way.
    
    # Alternatively, all hotkeys for keyboard could be disabled by the user.
    input_enable_hotkey = escape
    
    # Increases audio volume.
    # input_volume_up = kp_plus
    # Decreases audio volume.
    # input_volume_down = kp_minus
    
    # Toggles to next overlay. Wraps around.
    # input_overlay_next =
    
    # Toggles eject for disks. Used for multiple-disk content.
    # input_disk_eject_toggle =
    
    # Cycles through disk images. Use after ejecting.
    # Complete by toggling eject again.
    # input_disk_next =
    
    # Toggles menu.
    # input_menu_toggle = f1
    
    # Toggles mouse grab. When mouse is grabbed, RetroArch hides the mouse,
    # and keeps the mouse pointer inside the window to allow relative mouse input
    # to work better.
    # input_grab_mouse_toggle = f11
    
    #### Menu
    
    # Menu driver to use. "rgui", "lakka", etc. 
    # menu_driver = "rgui"
    
    #### Camera
    
    # Override the default camera device the camera driver uses. This is driver dependant.
    # camera_device =
    
    # Override the default privacy permission for cores that want to access camera services. Is "false" by default.
    # camera_allow = false
    
    #### Location
    
    # Override the default privacy permission for cores that want to access location services. Is "false" by default.
    # location_allow = false
    
    #### Netplay
    
    # When being client over netplay, use keybinds for player 1.
    # netplay_client_swap_input = false
    
    # The nickname being used for playing online.
    # netplay_nickname = 
    
    # The amount of delay frames to use for netplay. Increasing this value will increase
    # performance, but introduce more latency.
    # netplay_delay_frames = 0
    
    # Netplay mode for the current user.
    # false is Server, true is Client.
    # netplay_mode = false
    
    # Enable or disable spectator mode for the player during netplay.
    # netplay_spectator_mode_enable = false
    
    # The IP Address of the host to connect to.
    # netplay_ip_address = 
    
    # The port of the host IP Address. Can be either a TCP or an UDP port.
    # netplay_ip_port = 55435
    
    #### Misc
    
    # Enable rewinding. This will take a performance hit when playing, so it is disabled by default.
    rewind_enable = false
    
    # Rewinding buffer size in megabytes. Bigger rewinding buffer means you can rewind longer.
    # The buffer should be approx. 20MB per minute of buffer time.
    rewind_buffer_size = 10
    
    # Rewind granularity. When rewinding defined number of frames, you can rewind several frames at a time, increasing the rewinding speed.
    rewind_granularity = 2
    
    # Pause gameplay when window focus is lost.
    # pause_nonactive = true
    
    # Autosaves the non-volatile SRAM at a regular interval. This is disabled by default unless set otherwise.
    # The interval is measured in seconds. A value of 0 disables autosave.
    # autosave_interval =
    
    # Path to XML cheat database (as used by bSNES).
    # cheat_database_path =
    
    # Path to XML cheat config, a file which keeps track of which
    # cheat settings are used for individual games.
    # If the file does not exist, it will be created.
    # cheat_settings_path =
    
    # Directory to dump screenshots to.
    # screenshot_directory =
    
    # Records video after CPU video filter.
    # video_post_filter_record = false
    
    # Records output of GPU shaded material if available.
    # video_gpu_record = false
    
    # Screenshots output of GPU shaded material if available.
    video_gpu_screenshot = true
    
    # Block SRAM from being overwritten when loading save states.
    # Might potentially lead to buggy games.
    # block_sram_overwrite = false
    
    # When saving a savestate, save state index is automatically increased before
    # it is saved.
    # Also, when loading content, the index will be set to the highest existing index.
    # There is no upper bound on the index.
    # savestate_auto_index = false
    
    # Slowmotion ratio. When slowmotion, content will slow down by factor.
    # slowmotion_ratio = 3.0
    
    # The maximum rate at which content will be run when using fast forward. (E.g. 5.0 for 60 fps content => 300 fps cap).
    # RetroArch will go to sleep to ensure that the maximum rate will not be exceeded.
    # Do not rely on this cap to be perfectly accurate.
    # A negative ratio equals no FPS cap.
    # fastforward_ratio = -1.0
    
    # Enable stdin/network command interface.
    # network_cmd_enable = false
    # network_cmd_port = 55355
    # stdin_cmd_enable = false
    swandog
    Participant

    Ok I’ll look into that. Can I not just edit the file directly through leafpad?

    swandog
    Participant

    HI trimmtrabb.

    I did a fresh install yesterday and managed to get the pad to work using the following script and entering the controller keys.

    sudo chown pi /opt/retropie/configs/all/retroarch.cfg
    cd /opt/retropie/emulators/RetroArch/installdir/bin
    sudo ./retroarch-joyconfig -j 0 >> /opt/retropie/configs/all/retroarch.cfg

    I then got in to the retroarch.cfg file and copied it to the same as your file. Now the buttons are all over the place.

    Any ideas?

    swandog
    Participant

    Thanks again for your help.

    Don’t want to sound stupid but how do I edit the file and place the file in

    input_player1_joypad_index =

    ?

    swandog
    Participant

    The keyboard seems to work in the games though.

    Closest I’ve got before was following the emulationstation adjustments section of this link https://github.com/retropie/RetroPie-Setup/wiki/Advanced-Configuration

    when I ran /home/pi/.emulationstation/es_input.cfg I got the following screen which lists both an Xbox Gamepad and Microsoft Xbox 360 pad.

    Previously I tried copying the script in the tutorial above but I only managed to get one or two buttons working.

    Anyone?!?

    Frying my brain this is.

    swandog
    Participant

    Changed the script to -j 0, Inputed buttons when prompted and still nothing.

    Any ideas?

    swandog
    Participant

    Thanks, will try this later.

    If it doesn’t work, is there a way to change the input script to -j 1 ?

    swandog
    Participant

    Thanks for your reply trimmtrabb.

    When I run the last line it says “couldn’t open joystick #1”. Any ideas?

    Just noticed a line of script above when I exited emulation station saying the following;

    ‘Your xbox/xbox360 controller should now be available as:

    /dev/input/js0
    /dev/input/event2

    I’m using a wired controller, does the line above need to show /dev/input/js1??

    If so do you know how to Change it?

    swandog
    Participant

    anyone?

    in reply to: RPi not booting after writing image to SD card #82732
    swandog
    Participant

    I’m familiar with it otherwise I wouldn’t attempt to try this.

    Will give it a try this weekend and come back if I have any problems.

    Thanks for your help.

    in reply to: RPi not booting after writing image to SD card #82730
    swandog
    Participant

    I (tried) to follow this tutorial (http://lifehacker.com/how-to-turn-your-raspberry-pi-into-a-retro-game-console-498561192) which doesn’t mention anything about noobs or doing it all on the Rpi.

    in reply to: RPi not booting after writing image to SD card #82728
    swandog
    Participant

    All I want to do is set up a Retropie machine. I’ve just bought the new A+ board but will need to set it up using the B model I have.

    Following the instructions I’ve seen it doesn’t mention noobs at all, just says to write the image to the SD card and run on the Pi.

    in reply to: RPi not booting after writing image to SD card #82726
    swandog
    Participant

    Thanks for your reply mac2298.

    I’ve formatted my SD card and written the RetroPie image to it but when I try to load in my Pi for the first time I just get the red light and nothing boots.

    I have another card with XBMC set up and that works fine on the Pi so no issue with the Pi itself.

    Would this problem be an issue with the SD card?

Viewing 27 posts - 1 through 27 (of 27 total)