• This topic has 1 reply, 2 voices, and was last updated 10 years ago by Anonymous.
Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #83390
    silvervolkano
    Participant

    I cant make the second player work.

    I’m using two 360 xbox controller both linked with the wireless reciever. When i’m playing a game just 1 controller works and this controller is controlling both players.

    this is my retroarch.cfg

    thanks in advance.

    PS: Also, i cant exit a game or save states using only the controller…

    ## Skeleton config file for RetroArch

    # Save all save files (*.srm) to this directory. This includes related files like .bsv, .rtc, .psrm, etc …
    # This will be overridden by explicit command line options.
    # savefile_directory =

    # Save all save states (*.state) to this directory.
    # This will be overridden by explicit command line options.
    # savestate_directory =

    # If set to a directory, Content which is temporarily extracted
    # will be extracted to this directory.
    # extraction_directory =

    # Automatically saves a savestate at the end of RetroArch’s lifetime.
    # The path is $SRAM_PATH.auto.
    # RetroArch will automatically load any savestate with this path on startup if savestate_auto_load is set.
    # savestate_auto_save = false
    # savestate_auto_load = true

    # Load libretro from a dynamic location for dynamically built RetroArch.
    # This option is mandatory.

    # Path to a libretro implementation.
    # libretro_path = “/path/to/libretro.so”

    # A directory for where to search for libretro core implementations.
    # libretro_directory =

    # Sets log level for libretro cores (GET_LOG_INTERFACE).
    # If a log level issued by a libretro core is below libretro_log_level, it is ignored.
    # DEBUG logs are always ignored unless verbose mode is activated (–verbose).
    # DEBUG = 0, INFO = 1, WARN = 2, ERROR = 3.
    # libretro_log_level = 0

    # Enable or disable verbosity level of frontend.
    # log_verbosity = false

    # Enable or disable RetroArch performance counters
    # perfcnt_enable = false

    # Path to core options config file.
    # This config file is used to expose core-specific options.
    # It will be written to by RetroArch.
    # A default path will be assigned if not set.
    core_options_path = /opt/retropie/configs/all/retroarch-core-options.cfg

    # Path to content load history file.
    # RetroArch keeps track of all content loaded in the menu and from CLI directly for convenient quick loading.
    # A default path will be assigned if not set.
    # game_history_path =

    # Number of entries that will be kept in content history file.
    # game_history_size = 100

    # Sets the “system” directory.
    # Implementations can query for this directory to load BIOSes, system-specific configs, etc.
    system_directory = /home/pi/RetroPie/roms/../BIOS

    # Sets start directory for menu content browser.
    # rgui_browser_directory =

    # Content directory. Interacts with RETRO_ENVIRONMENT_GET_CONTENT_DIRECTORY.
    # Usually set by developers who bundle libretro/RetroArch apps to point to assets.
    # content_directory =

    # Assets directory. This location is queried by default when menu interfaces try to look for
    # loadable assets, etc.
    # assets_directory =

    # Sets start directory for menu config browser.
    # rgui_config_directory =

    # Show startup screen in menu.
    # Is automatically set to false when seen for the first time.
    # This is only updated in config if config_save_on_exit is set to true, however.
    # rgui_show_start_screen = true

    # Flushes config to disk on exit. Useful for menu as settings can be modified.
    # Overwrites the config. #include’s and comments are not preserved.
    config_save_on_exit = false

    # Load up a specific config file based on the core being used.
    # core_specific_config = false

    #### Video

    # Video driver to use. “gl”, “xvideo”, “sdl”
    # video_driver = “gl”

    # Which OpenGL context implementation to use.
    # Possible ones for desktop are: glx, x-egl, kms-egl, sdl-gl, wgl.
    # By default, tries to use first suitable driver.
    # video_gl_context =

    # Windowed xscale and yscale
    # (Real x res: base_size * xscale * aspect_ratio, real y res: base_size * yscale)
    # video_xscale = 3.0
    # video_yscale = 3.0

    # Fullscreen resolution. Resolution of 0 uses the resolution of the desktop.
    # video_fullscreen_x = 0
    # video_fullscreen_y = 0

    # Start in fullscreen. Can be changed at runtime.
    # video_fullscreen = false

    # If fullscreen, prefer using a windowed fullscreen mode.
    # video_windowed_fullscreen = true

    # Which monitor to prefer. 0 (default) means no particular monitor is preferred, 1 and up (1 being first monitor),
    # suggests RetroArch to use that particular monitor.
    # video_monitor_index = 0

    # Forcibly disable composition. Only works in Windows Vista/7 for now.
    # video_disable_composition = false

    # Video vsync.
    # video_vsync = true

    # Attempts to hard-synchronize CPU and GPU. Can reduce latency at cost of performance.
    # video_hard_sync = false

    # Sets how many frames CPU can run ahead of GPU when using video_hard_sync.
    # Maximum is 3.
    # video_hard_sync_frames = 0

    # Inserts a black frame inbetween frames.
    # Useful for 120 Hz monitors who want to play 60 Hz material with eliminated ghosting.
    # video_refresh_rate should still be configured as if it is a 60 Hz monitor (divide refresh rate by 2).
    # video_black_frame_insertion = false

    # Use threaded video driver. Using this might improve performance at possible cost of latency and more video stuttering.
    video_threaded = true

    # Use a shared context for HW rendered libretro cores.
    # Avoids having to assume GL state changes inbetween frames.
    # video_shared_context = false

    # Smoothens picture with bilinear filtering. Should be disabled if using pixel shaders.
    video_smooth = false

    # Forces rendering area to stay equal to content aspect ratio or as defined in video_aspect_ratio.
    # video_force_aspect = true

    # Only scales video in integer steps.
    # The base size depends on system-reported geometry and aspect ratio.
    # If video_force_aspect is not set, X/Y will be integer scaled independently.
    # video_scale_integer = false

    # A floating point value for video aspect ratio (width / height).
    # If this is not set, aspect ratio is assumed to be automatic.
    # Behavior then is defined by video_aspect_ratio_auto.
    video_aspect_ratio = 1.33

    # If this is true and video_aspect_ratio is not set,
    # aspect ratio is decided by libretro implementation.
    # If this is false, 1:1 PAR will always be assumed if video_aspect_ratio is not set.
    # video_aspect_ratio_auto = false

    # Forces cropping of overscanned frames.
    # Exact behavior of this option is implementation specific.
    # video_crop_overscan = true

    # Path to shader. Shader can be either Cg, CGP (Cg preset) or GLSL, GLSLP (GLSL preset)
    # video_shader = “/path/to/shader.{cg,cgp,glsl,glslp}”

    # Load video_shader on startup.
    # Other shaders can still be loaded later in runtime.
    # video_shader_enable = false

    # Defines a directory where shaders (Cg, CGP, GLSL) are kept for easy access.
    video_shader_dir = /opt/retropie/emulators/RetroArch/shader/

    # CPU-based video filter. Path to a dynamic library.
    # video_filter =

    # Path to a font used for rendering messages. This path must be defined to enable fonts.
    # Do note that the _full_ path of the font is necessary!
    # video_font_path =

    # Size of the font rendered.
    # video_font_size = 32

    # Enable usage of OSD messages.
    # video_font_enable = true

    # Offset for where messages will be placed on screen. Values are in range 0.0 to 1.0 for both x and y values.
    # [0.0, 0.0] maps to the lower left corner of the screen.
    # video_message_pos_x = 0.05
    # video_message_pos_y = 0.05

    # Color for message. The value is treated as a hexadecimal value.
    # It is a regular RGB hex number, i.e. red is “ff0000”.
    # video_message_color = ffffff

    # Video refresh rate of your monitor.
    # Used to calculate a suitable audio input rate.
    # video_refresh_rate = 59.95

    # Allows libretro cores to set rotation modes.
    # Setting this to false will honor, but ignore this request.
    # This is useful for vertically oriented content where one manually rotates the monitor.
    # video_allow_rotate = true

    # Forces a certain rotation of the screen.
    # The rotation is added to rotations which the libretro core sets (see video_allow_rotate).
    # The angle is <value> * 90 degrees counter-clockwise.
    # video_rotation = 0

    #### Audio

    # Enable audio.
    # audio_enable = true

    # Audio output samplerate.
    # audio_out_rate = 48000

    # Audio resampler backend. Which audio resampler to use.
    # Default will use “sinc”.
    # audio_resampler =

    # Audio driver backend. Depending on configuration possible candidates are: alsa, pulse, oss, jack, rsound, roar, openal, sdl, xaudio.
    # audio_driver =

    # Override the default audio device the audio_driver uses. This is driver dependant. E.g. ALSA wants a PCM device, OSS wants a path (e.g. /dev/dsp), Jack wants portnames (e.g. system:playback1,system:playback_2), and so on …
    # audio_device =

    # Audio DSP plugin that processes audio before it’s sent to the driver. Path to a dynamic library.
    # audio_dsp_plugin =

    # Will sync (block) on audio. Recommended.
    # audio_sync = true

    # Desired audio latency in milliseconds. Might not be honored if driver can’t provide given latency.
    # audio_latency = 64

    # Enable audio rate control.
    # audio_rate_control = true

    # Controls audio rate control delta. Defines how much input rate can be adjusted dynamically.
    # Input rate = in_rate * (1.0 +/- audio_rate_control_delta)
    # audio_rate_control_delta = 0.005

    # Audio volume. Volume is expressed in dB.
    # 0 dB is normal volume. No gain will be applied.
    # Gain can be controlled in runtime with input_volume_up/input_volume_down.
    # audio_volume = 0.0

    #### Overlay

    # Enable overlay.
    # input_overlay_enable = false

    # Path to input overlay
    # input_overlay =

    # Overlay opacity
    # input_overlay_opacity = 1.0

    # Overlay scale
    # input_overlay_scale = 1.0

    #### Input

    # Input driver. Depending on video driver, it might force a different input driver.
    # input_driver = sdl

    # Joypad driver. (Valid: linuxraw, sdl, dinput)
    # input_joypad_driver =

    # Keyboard layout for input driver if applicable (udev/evdev for now).
    # Syntax is either just layout (e.g. “no”), or a layout and variant separated with colon (“no:nodeadkeys”).
    # input_keyboard_layout =

    # Defines axis threshold. Possible values are [0.0, 1.0]
    # input_axis_threshold = 0.5

    # Enable input auto-detection. Will attempt to autoconfigure
    # joypads, Plug-and-Play style.
    input_autodetect_enable = true

    # Directory for joypad autoconfigs (PC).
    # If a joypad is plugged in, that joypad will be autoconfigured if a config file
    # corresponding to that joypad is present in joypad_autoconfig_dir.
    # Input binds which are made explicit (input_playerN_*_btn/axis) will take priority over autoconfigs.
    # Autoconfigs can be created with retroarch-joyconfig, manually, or with a frontend.
    # Requires input_autodetect_enable to be enabled.
    joypad_autoconfig_dir = /opt/retropie/emulators/RetroArch/configs/

    # Enable debug input key reporting on-screen.
    # input_debug_enable = false

    # Sets which libretro device is used for a player.
    # Devices are indentified with a number.
    # This is normally saved by the menu.
    # Device IDs are found in libretro.h.
    # These settings are overridden by explicit command-line arguments which refer to input devices.
    # None: 0
    # Joypad (RetroPad): 1
    # Mouse: 2
    # Keyboard: 3
    # Generic Lightgun: 4
    # Joypad w/ Analog (RetroPad + Analog sticks): 5
    # Multitap (SNES specific): 257
    # Super Scope (SNES specific): 260
    # Justifier (SNES specific): 516
    # Justifiers (SNES specific): 772

    # input_libretro_device_p1 =
    # input_libretro_device_p2 =
    # input_libretro_device_p3 =
    # input_libretro_device_p4 =
    # input_libretro_device_p5 =
    # input_libretro_device_p6 =
    # input_libretro_device_p7 =
    # input_libretro_device_p8 =

    # Keyboard input. Will recognize letters (“a” to “z”) and the following special keys (where “kp_”
    # is for keypad keys):
    #
    # left, right, up, down, enter, kp_enter, tab, insert, del, end, home,
    # rshift, shift, ctrl, alt, space, escape, add, subtract, kp_plus, kp_minus,
    # f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12,
    # num0, num1, num2, num3, num4, num5, num6, num7, num8, num9, pageup, pagedown,
    # keypad0, keypad1, keypad2, keypad3, keypad4, keypad5, keypad6, keypad7, keypad8, keypad9,
    # period, capslock, numlock, backspace, multiply, divide, print_screen, scroll_lock,
    # tilde, backquote, pause, quote, comma, minus, slash, semicolon, equals, leftbracket,
    # backslash, rightbracket, kp_period, kp_equals, rctrl, ralt
    #
    # Keyboard input, Joypad and Joyaxis will all obey the “nul” bind, which disables the bind completely,
    # rather than relying on a default.
    input_player1_a = x
    input_player1_b = z
    input_player1_y = a
    input_player1_x = s
    input_player1_start = enter
    input_player1_select = rshift
    input_player1_l = q
    input_player1_r = w
    input_player1_left = left
    input_player1_right = right
    input_player1_up = up
    input_player1_down = down
    # input_player1_l2 =
    # input_player1_r2 =
    # input_player1_l3 =
    # input_player1_r3 =

    # Two analog sticks (DualShock-esque).
    # Bound as usual, however, if a real analog axis is bound,
    # it can be read as a true analog.
    # Positive X axis is right, Positive Y axis is down.
    # input_player1_l_x_plus =
    # input_player1_l_x_minus =
    # input_player1_l_y_plus =
    # input_player1_l_y_minus =
    # input_player1_r_x_plus =
    # input_player1_r_x_minus =
    # input_player1_r_y_plus =
    # input_player1_r_y_minus =

    # If desired, it is possible to override which joypads are being used for player 1 through 8.
    # First joypad available is 0.
    # input_player1_joypad_index = 0
    # input_player2_joypad_index = 1
    # input_player3_joypad_index = 2
    # input_player4_joypad_index = 3
    # input_player5_joypad_index = 4
    # input_player6_joypad_index = 5
    # input_player7_joypad_index = 6
    # input_player8_joypad_index = 7

    # Joypad buttons.
    # Figure these out by using RetroArch-Phoenix or retroarch-joyconfig.
    # You can use joypad hats with hnxx, where n is the hat, and xx is a string representing direction.
    # E.g. “h0up”
    # input_player1_a_btn =
    # input_player1_b_btn =
    # input_player1_y_btn =
    # input_player1_x_btn =
    # input_player1_start_btn =
    # input_player1_select_btn =
    # input_player1_l_btn =
    # input_player1_r_btn =
    # input_player1_left_btn =
    # input_player1_right_btn =
    # input_player1_up_btn =
    # input_player1_down_btn =
    # input_player1_l2_btn =
    # input_player1_r2_btn =
    # input_player1_l3_btn =
    # input_player1_r3_btn =

    # Axis for RetroArch D-Pad.
    # Needs to be either ‘+’ or ‘-‘ in the first character signaling either positive or negative direction of the axis, then the axis number.
    # Do note that every other input option has the corresponding _btn and _axis binds as well; they are omitted here for clarity.
    # input_player1_left_axis =
    # input_player1_right_axis =
    # input_player1_up_axis =
    # input_player1_down_axis =

    # Holding the turbo while pressing another button will let the button enter a turbo mode
    # where the button state is modulated with a periodic signal.
    # The modulation stops when the button itself (not turbo button) is released.
    # input_player1_turbo =

    # Describes the period and how long of that period a turbo-enabled button should behave.
    # Numbers are described in frames.
    # input_turbo_period = 6
    # input_turbo_duty_cycle = 3

    # This goes all the way to player 8 (*_player2_*, *_player3_*, etc), but omitted for clarity.
    # All input binds have corresponding binds for keyboard (none), joykeys (_btn) and joyaxes (_axis) as well.

    # Toggles fullscreen.
    # input_toggle_fullscreen = f

    # Saves state.
    # input_save_state = f2
    # Loads state.
    # input_load_state = f4

    # State slots. With slot set to 0, save state name is *.state (or whatever defined on commandline).
    # When slot is != 0, path will be $path%d, where %d is slot number.
    # input_state_slot_increase = f7
    # input_state_slot_decrease = f6

    # Toggles between fast-forwarding and normal speed.
    # input_toggle_fast_forward = space

    # Hold for fast-forward. Releasing button disables fast-forward.
    # input_hold_fast_forward = l

    # Key to exit RetroArch cleanly.
    # Killing it in any hard way (SIGKILL, etc) will terminate RetroArch without saving RAM, etc.
    # On Unix-likes, SIGINT/SIGTERM allows a clean deinitialization.
    input_exit_emulator = escape

    # Applies next and previous shader in directory.
    input_shader_next = m
    input_shader_prev = n

    # Hold button down to rewind. Rewinding must be enabled.
    input_rewind = r

    # Toggle between recording and not.
    # input_movie_record_toggle = o

    # Toggle between paused and non-paused state
    # input_pause_toggle = p

    # Frame advance when content is paused
    # input_frame_advance = k

    # Reset the content.
    # input_reset = h

    # Cheats.
    # input_cheat_index_plus = y
    # input_cheat_index_minus = t
    # input_cheat_toggle = u

    # Mute/unmute audio
    # input_audio_mute = f9

    # Take screenshot
    # input_screenshot = f8

    # Netplay flip players.
    # input_netplay_flip_players = i

    # Hold for slowmotion.
    # input_slowmotion = e

    # Enable other hotkeys.
    # If this hotkey is bound to either keyboard, joybutton or joyaxis,
    # all other hotkeys will be disabled unless this hotkey is also held at the same time.
    # This is useful for RETRO_KEYBOARD centric implementations
    # which query a large area of the keyboard, where it is not desirable
    # that hotkeys get in the way.

    # Alternatively, all hotkeys for keyboard could be disabled by the user.
    input_enable_hotkey = escape

    # Increases audio volume.
    # input_volume_up = kp_plus
    # Decreases audio volume.
    # input_volume_down = kp_minus

    # Toggles to next overlay. Wraps around.
    # input_overlay_next =

    # Toggles eject for disks. Used for multiple-disk content.
    # input_disk_eject_toggle =

    # Cycles through disk images. Use after ejecting.
    # Complete by toggling eject again.
    # input_disk_next =

    # Toggles menu.
    # input_menu_toggle = f1

    # Toggles mouse grab. When mouse is grabbed, RetroArch hides the mouse,
    # and keeps the mouse pointer inside the window to allow relative mouse input
    # to work better.
    # input_grab_mouse_toggle = f11

    #### Menu

    # Menu driver to use. “rgui”, “lakka”, etc.
    # menu_driver = “rgui”

    #### Camera

    # Override the default camera device the camera driver uses. This is driver dependant.
    # camera_device =

    # Override the default privacy permission for cores that want to access camera services. Is “false” by default.
    # camera_allow = false

    #### Location

    # Override the default privacy permission for cores that want to access location services. Is “false” by default.
    # location_allow = false

    #### Netplay

    # When being client over netplay, use keybinds for player 1.
    # netplay_client_swap_input = false

    # The nickname being used for playing online.
    # netplay_nickname =

    # The amount of delay frames to use for netplay. Increasing this value will increase
    # performance, but introduce more latency.
    # netplay_delay_frames = 0

    # Netplay mode for the current user.
    # false is Server, true is Client.
    # netplay_mode = false

    # Enable or disable spectator mode for the player during netplay.
    # netplay_spectator_mode_enable = false

    # The IP Address of the host to connect to.
    # netplay_ip_address =

    # The port of the host IP Address. Can be either a TCP or an UDP port.
    # netplay_ip_port = 55435

    #### Misc

    # Enable rewinding. This will take a performance hit when playing, so it is disabled by default.
    rewind_enable = false

    # Rewinding buffer size in megabytes. Bigger rewinding buffer means you can rewind longer.
    # The buffer should be approx. 20MB per minute of buffer time.
    rewind_buffer_size = 10

    # Rewind granularity. When rewinding defined number of frames, you can rewind several frames at a time, increasing the rewinding speed.
    rewind_granularity = 2

    # Pause gameplay when window focus is lost.
    # pause_nonactive = true

    # Autosaves the non-volatile SRAM at a regular interval. This is disabled by default unless set otherwise.
    # The interval is measured in seconds. A value of 0 disables autosave.
    # autosave_interval =

    # Path to XML cheat database (as used by bSNES).
    # cheat_database_path =

    # Path to XML cheat config, a file which keeps track of which
    # cheat settings are used for individual games.
    # If the file does not exist, it will be created.
    # cheat_settings_path =

    # Directory to dump screenshots to.
    # screenshot_directory =

    # Records video after CPU video filter.
    # video_post_filter_record = false

    # Records output of GPU shaded material if available.
    # video_gpu_record = false

    # Screenshots output of GPU shaded material if available.
    video_gpu_screenshot = true

    # Block SRAM from being overwritten when loading save states.
    # Might potentially lead to buggy games.
    # block_sram_overwrite = false

    # When saving a savestate, save state index is automatically increased before
    # it is saved.
    # Also, when loading content, the index will be set to the highest existing index.
    # There is no upper bound on the index.
    # savestate_auto_index = false

    # Slowmotion ratio. When slowmotion, content will slow down by factor.
    # slowmotion_ratio = 3.0

    # The maximum rate at which content will be run when using fast forward. (E.g. 5.0 for 60 fps content => 300 fps cap).
    # RetroArch will go to sleep to ensure that the maximum rate will not be exceeded.
    # Do not rely on this cap to be perfectly accurate.
    # A negative ratio equals no FPS cap.
    # fastforward_ratio = -1.0

    # Enable stdin/network command interface.
    # network_cmd_enable = false
    # network_cmd_port = 55355
    # stdin_cmd_enable = false

    input_player1_joypad_index = “0”
    input_player1_b_btn = “1”
    input_player1_y_btn = “3”
    input_player1_select_btn = “6”
    input_player1_start_btn = “7”
    input_player1_up_btn = “13”
    input_player1_down_btn = “14”
    input_player1_left_btn = “11”
    input_player1_right_btn = “12”
    input_player1_a_btn = “0”
    input_player1_x_btn = “2”
    input_player1_l_btn = “4”
    input_player1_r_btn = “5”
    input_player1_l2_axis = “+2”
    input_player1_r2_axis = “+5”
    input_player1_l3_btn = “9”
    input_player1_r3_btn = “10”
    input_player1_l_x_plus_axis = “+0”
    input_player1_l_x_minus_axis = “-0”
    input_player1_l_y_plus_axis = “+1”
    input_player1_l_y_minus_axis = “-1”
    input_player1_r_x_plus_axis = “+3”
    input_player1_r_x_minus_axis = “-3”
    input_player1_r_y_plus_axis = “+4”
    input_player1_r_y_minus_axis = “-4”

    input_player2_joypad_index = “1”
    input_player2_b_btn = “1”
    input_player2_y_btn = “3”
    input_player2_select_btn = “6”
    input_player2_start_btn = “7”
    input_player2_up_btn = “13”
    input_player2_down_btn = “14”
    input_player2_left_btn = “11”
    input_player2_right_btn = “12”
    input_player2_a_btn = “0”
    input_player2_x_btn = “2”
    input_player2_l_btn = “4”
    input_player2_r_btn = “5”
    input_player2_l2_axis = “+2”
    input_player2_r2_axis = “+5”
    input_player2_l3_btn = “9”
    input_player2_r3_btn = “10”
    input_player2_l_x_plus_axis = “+0”
    input_player2_l_x_minus_axis = “-0”
    input_player2_l_y_plus_axis = “+1”
    input_player2_l_y_minus_axis = “-1”
    input_player2_r_x_plus_axis = “+3”
    input_player2_r_x_minus_axis = “-3”
    input_player2_r_y_plus_axis = “+4”
    input_player2_r_y_minus_axis = “-4”

    input_enable_hotkey_btn = “8”
    input_exit_emulator_btn = “9”

    #83568
    Anonymous
    Inactive

    I have the same problem. I can get both controllers to be recognized with method 1 or 2, method 3 did not work for me. I wonder if there’s a joystick index mismatch issue.

Viewing 2 posts - 1 through 2 (of 2 total)
  • The forum ‘Everything else related to the RetroPie Project’ is closed to new topics and replies.